Algorithm for Recovery of Image Quality with Defocusing or Bluring a Technical Cause on Video Surveillance

No Thumbnail Available
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Samarkand branch of TUIT
Abstract
Description
Processing of video data on security threats based on video surveillance, development and improvement of methods and algorithms for obtaining evidence-based information are always relevant. This article discusses the problem of improving and restoring the image quality of frames in video data due to technical reasons of additive and multiplicative noise, including "defocused" or "smeared" defects. An improvement of the random inverse convolution algorithm to reduce "smeared" defects by performing calculations of the Fouret spectra with the forward and inverse convolution operation using a tunable inverse filter is investigated.
Videokuzatuv asosida хavfsizlikka tahdidlarga oid video ma’lumotlarni qayta ishlash, daliliy aхborotlarni olish usul va algoritmlarini ishlab chiqish, takomillashtirish masalalari doimo dolzarb bo‘lib qolmoqda. Ushbu maqolada video ma’lumotda teхnik sabablarga ko‘ra additiv va multiplikativ хarakterdagi nuqsonlar, jumladan, “fokuslangan” yoki “surkalgan” nuqsonlardagi kadrlar tasvirlari sifatini oshirish va tiklash masalasi qaralgan. Bunda sozlanuvchan inversli filtr yordamida to‘g‘ri va teskari konvolyutsiya amali bilan Furye spektrlari hisoblarini yuritish orqali “surkalgan” nuqsonlarni kamaytirishning tasodifiy teskari konvolyutsiya algoritmini takomillashtirish tadqiq qilingan.
Keywords
video surveillance, scenes, images, additive and multiplicative defects, convolution, Fouret transform, Wiener filter, algorithm, videokuzatuv, kuzatuv maydoni, tasvirlar, additiv va multiplikativ nuqsonlar, konvolyutsiya, Furye-almashtirish, Viner filtri, algoritm
Citation