The Spectrum of the Sum of Two Orthogonal Projectors in Separable Gilbert Space
dc.creator | Boltaev, Kh. Kh. | |
dc.creator | Ergashova, M. S. | |
dc.date | 2022-10-29 | |
dc.date.accessioned | 2023-08-21T13:11:46Z | |
dc.date.available | 2023-08-21T13:11:46Z | |
dc.description | This paper considers the spectrum of two orthogonal projectors in separable Gilbert space. In separable Gilbert space, the appearance of the sum of the spectrum of two orthogonal projectors is calculated. It is also shown that the self-adjoint operator A can be expressed as a linear combination of two orthoprojectors. | en-US |
dc.format | application/pdf | |
dc.identifier | https://procedia.online/index.php/philosophy/article/view/212 | |
dc.identifier.uri | http://dspace.umsida.ac.id/handle/123456789/23555 | |
dc.language | eng | |
dc.publisher | Procedia Publish Group | en-US |
dc.relation | https://procedia.online/index.php/philosophy/article/view/212/187 | |
dc.source | Procedia of Philosophical and Pedagogical Sciences; 2022: Proceedings of the World Conference on "Integrated and Life-long Education of Modernity"; 26-29 | en-US |
dc.source | 2795-546X | |
dc.subject | Gilbert space | en-US |
dc.subject | separable Gilbert space | en-US |
dc.subject | orthogonal projectors | en-US |
dc.subject | linear combination | en-US |
dc.subject | orthoprojectors | en-US |
dc.subject | homomorphisms | en-US |
dc.subject | subspaces | en-US |
dc.subject | self-adjoint operator | en-US |
dc.subject | orthogonal spaces | en-US |
dc.title | The Spectrum of the Sum of Two Orthogonal Projectors in Separable Gilbert Space | en-US |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | Peer-reviewed Article | en-US |