Investigation on Self-Similar Analysis of the Problem Biological Population Kolmogorov-Fisher Type System

dc.creatorSadullaeva, Sh.
dc.creatorFayzullaeva, Z.
dc.date2021-11-12
dc.date.accessioned2023-08-21T07:58:26Z
dc.date.available2023-08-21T07:58:26Z
dc.descriptionIn this work we considered a parabolic system of two quasilinear reaction-diffusion equations for a biological population problem of the Kolmogorov-Fisher type describes the process of a biological population in a nonlinear two-component medium. We studied the qualitative properties of the solution to Cauchy problem based on self-similar analysis and its numerical solutions using the methods of modern computer technologies, to study the methods of linearization to the convergence of the iterative process with further visualization.en-US
dc.formatapplication/pdf
dc.identifierhttps://journals.researchparks.org/index.php/IJOT/article/view/2371
dc.identifier10.31149/ijot.v3i11.2371
dc.identifier.urihttp://dspace.umsida.ac.id/handle/123456789/15601
dc.languageeng
dc.publisherResearch Parks Publishing LLCen-US
dc.relationhttps://journals.researchparks.org/index.php/IJOT/article/view/2371/2280
dc.rightsCopyright (c) 2021 International Journal on Orange Technologiesen-US
dc.sourceInternational Journal on Orange Technologies; Vol. 3 No. 11 (2021): IJOT; 20-24en-US
dc.source2615-8140
dc.source2615-7071
dc.source10.31149/ijot.v3i11
dc.subjectCauchy problemen-US
dc.subjectquasilinearen-US
dc.subjectreaction-diffusionen-US
dc.subjectbiological populationen-US
dc.subjectnumerical solutionsen-US
dc.titleInvestigation on Self-Similar Analysis of the Problem Biological Population Kolmogorov-Fisher Type Systemen-US
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typePeer-reviewed Articleen-US
Files