Methods of Voice Commands Recognition
dc.creator | Nurimov, P.B. | |
dc.date | 2023-12-26 | |
dc.date.accessioned | 2024-03-25T11:46:38Z | |
dc.date.available | 2024-03-25T11:46:38Z | |
dc.description | This article discusses the use of SVM and GMM methods to build voice command models to solve the problem of voice command recognition. Voice recognition technology is available in a wide range of applications, including voice assistants, control systems and more. The article presents an approach based on the use of SVM and GMM methods for modeling and classifying voice commands. The article presents experiments on a dataset of Karakalpak voice commands. A comparative analysis of the performance of SVM and GMM was conducted in terms of recognition accuracy and overall performance based on feature set extraction algorithms. Experimental results show that SVM and GMM methods can achieve high accuracy in recognizing voice commands. Therefore, this paper presents a comparison between SVM and GMM methods for voice command recognition. | en-US |
dc.description | Ushbu maqola ovozli buyruqlarni tanib olish masalasi uchun ovozli buyruqlar modelini qurish uchun SVM va GMM usullaridan foydalanish koʻrib chiqilgan. Ovozli buyruqlarni tanib olish texnologiyasi keng koʻlamli ilovalarda mavjud, jumladan ovozli yordamchilar, boshqaruv tizimlari va boshqalar. Maqolada ovozli buyruqlarni modellashtirish va tasniflash uchun SVM va GMM usullaridan foydalanishga asoslangan yondashuv taqdim etilgan. Maqolada qoraqalpoq tilidagi ovozli buyruqlar ma’lumotlar toʻplami boʻyicha tajribalar taqdim etilgan. Tanib olish aniqligi va uning belgilar toʻplamini ajratib olish algoritmlariga asoslangan umumiy samaradorlik nuqtai nazaridan SVM va GMM koʻrsatkichlarining qiyosiy tahlillari oʻtkazildi. Eksperimental natijalar shuni koʻrsatadiki, SVM va GMM usullari ham ovozli buyruqlarni tanib olishda yuqori aniqlikga erishishi mumkin. Xulosa qilib aytganda, ushbu maqolada ovozli buyruqlarni tanib olish masalasida SVM va GMM usullarining taqqoslanishi keltirilgan. | ru-RU |
dc.format | application/pdf | |
dc.identifier | https://ijdt.uz/index.php/ijdt/article/view/133 | |
dc.identifier | 10.62132/ijdt.v6i4.133 | |
dc.identifier.uri | https://dspace.umsida.ac.id/handle/123456789/36088 | |
dc.language | rus | |
dc.publisher | Samarkand branch of TUIT | ru-RU |
dc.relation | https://ijdt.uz/index.php/ijdt/article/view/133/88 | |
dc.rights | Copyright (c) 2023 Nurimov P.B. | ru-RU |
dc.rights | https://creativecommons.org/licenses/by/4.0 | ru-RU |
dc.source | INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED ISSUES OF DIGITAL TECHNOLOGIES; Vol. 6 No. 4 (2023): International Journal of Theoretical and Applied Issues of Digital Technologies; 47-52 | en-US |
dc.source | Международный Журнал Теоретических и Прикладных Вопросов Цифровых Технологий; Том 6 № 4 (2023): Международный журнал теоретических и прикладных вопросов цифровых технологий; 47-52 | ru-RU |
dc.source | 2181-3094 | |
dc.source | 2181-3086 | |
dc.subject | voice signal | en-US |
dc.subject | recognition voice commands | en-US |
dc.subject | feature extraction | en-US |
dc.subject | Support vector machines | en-US |
dc.subject | Gaussian mixture model | en-US |
dc.subject | ovoz signali | ru-RU |
dc.subject | ovozli buyruqlarni tanib olish | ru-RU |
dc.subject | belgilar toʻplamini ajratish | ru-RU |
dc.subject | tayanch vektorlar mashinalari | ru-RU |
dc.subject | Gaus aralashma modeli | ru-RU |
dc.title | Methods of Voice Commands Recognition | en-US |
dc.title | Ovozli buyruqlаrni tаnib olish usullari | ru-RU |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | Рецензированная статья | ru-RU |